Generating Maximal Independent Sets for Hypergraphs with Bounded Edge-Intersections
نویسندگان
چکیده
Given a finite set V , and integers k ≥ 1 and r ≥ 0, denote by A(k, r) the class of hypergraphs A ⊆ 2 with (k, r)-bounded intersections, i.e. in which the intersection of any k distinct hyperedges has size at most r. We consider the problem MIS(A, I): given a hypergraph A and a subfamily I ⊆ I(A), of its maximal independent sets (MIS) I(A), either extend this subfamily by constructing a new MIS I ∈ I(A) \ I or prove that there are no more MIS, that is I = I(A). We show that for hypergraphs A ∈ A(k, r) with k + r ≤ const, problem MIS(A, I) is NC-reducible to problem MIS(A′, ∅) of generating a single MIS for a partial subhypergraph A′ of A. In particular, for this class of hypergraphs, we get an incremental polynomial algorithm for generating all MIS. Furthermore, combining this result with the currently known algorithms for finding a single maximal independent set of a hypergraph, we obtain efficient parallel algorithms for incrementally generating all MIS for hypergraphs in the classes A(1, c), A(c, 0), and A(2, 1), where c is a constant. We also show that, for A ∈ A(k, r), where k + r ≤ const, the problem of generating all MIS of A can be solved in incremental polynomial-time with space polynomial only in the size of A.
منابع مشابه
An Incremental RNC Algorithm for Generating All Maximal Independent Sets in Hypergraphs of Bounded Dimension∗
We show that for hypergraphs of bounded edge size, the problem of extending a given list of maximal independent sets is NC-reducible to the computation of an arbitrary maximal independent set for an induced sub-hypergraph. The latter problem is known to be in RNC. In particular, our reduction yields an incremental RNC dualization algorithm for hypergraphs of bounded edge size, a problem previou...
متن کاملAn Efficient Incremental Algorithm for Generating All Maximal Independent Sets in Hypergraphs of Bounded Dimension
We show that for hypergraphs of bounded edge size, the problem of extending a given list of maximal independent sets is NC-reducible to the computation of an arbitrary maximal independent set for an induced sub-hypergraph. The latter problem is known to be in RNC. In particular, our reduction yields an incremental RNC dualization algorithm for hypergraphs of bounded edge size, a problem previou...
متن کاملOn the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs
Given a finite set V , and integers k ≥ 1 and r ≥ 0, denote by A(k, r) the class of hypergraphs A ⊆ 2 with (k, r)-bounded intersections, i.e. in which the intersection of any k distinct hyperedges has size at most r. We consider the problem MIS(A, I): given a hypergraph A and a subfamily I ⊆ I(A), of its maximal independent sets (MIS) I(A), either extend this subfamily by constructing a new MIS...
متن کاملSome fixed-parameter tractable classes of Dual and related problems⋆
In this paper we present fixed-parameter algorithms for the problem Dual—given two hypergraphs, decide if one is the transversal hypergraph of the other—and related problems. In the first part, we give algorithms for the parameters number of edges of the hypergraphs, the maximum degree of a vertex, and vertex complementary degrees. In the second part, we use an Apriori approach to obtain FPT re...
متن کاملSome Fixed-Parameter Tractable Classes of Hypergraph Duality and Related Problems
In this paper we present fixed-parameter algorithms for the problem Dual—given two hypergraphs, decide if one is the transversal hypergraph of the other—and related problems. In the first part, we consider the number of edges of the hypergraphs, the maximum degree of a vertex, and a vertex complementary degree as our parameters. In the second part, we use an Apriori approach to obtain FPT resul...
متن کامل